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When a strong constant electric field acts on a ferroelectric ceramic in the nonpolar 
phase polarization occurs in the ceramic and a substantially weaker electric field excites 
harmonic oscillations [i]. The use of an electrostrictive ceramic ensures a linear (anhys- 
teretic) dependence of the mechanical deformations on the electric field, which is important 
in the construction of adaptive optical systems and micropositioning device [2]. Interest 
in electrostrictive ceramics has also been stimulated by the possibility of creating stable 
forms of parametric oscillations [3, 4]. 

As follows from experiment, when a ferroelectric ceramic is compressed in the direction 
perpendicular to the polarization vector the electromechanical force factor increases 1.8-2 
times. For this reason, as well as in order to expand the range of operating frequencies 
and to increase the strength, the ferroelectric ceramic is reinforced with metal which pre- 
stresses the ceramic. Preliminary mechanical forces of one-third to half the operating load 
are produced during the fabrication of piezoelectric converters. 

We consider a cylindrical shell of ferroelectric ceramic, onto which a thin metal shell 
is fastened as a result of a temperature difference. A preliminary normal contact pressure 

qn = const arises between the layers in the process. Alternating electric potentials V= 

V0 exp (imt) (V >> V), besides constant potentials V, are applied to the outer surfaces to 

the ferroelectric ceramic with coordinates z = • (h is the thickness of the shell). 

i. The electrostriction equations in terms of the periodic mechanical deformations and 
electrical quantities have the form [i] 

E E 
e3 = s13 (oi + 02) + s33~ + 2QIIE3E3, 

(i.i) 

where e i (i = i, 2, 3) are the strains in the directions of the unit vectors ~, T2, and n 
(see Fig. I); o i are the mechanical stresses; sliE are the elastic susceptibilities of the 

ferroelectric ceramic; E s = E3 + ~ (E3 and E 3 are the constant and alternating components 
of the electric field, E3 >>E~ ; and QII and QI2 are the electrostriction constants. 

A constant normal contact pressure qn acting on a ferroelectric ceramic shell produces 

initial compressive, radial ~3, and circumferential ~2 stresses, which can be determined by 

the methods of the two-dimensional theory of elasticity [5]: 

Here R is the radius of the middle surface; and ~2 are the stresses averaged over the thick- 
ness. The mechanical stresses ai(i = i, 2, 3) consists of constant and variable components ci = o i + 

oiiwhere the variable stresses ~ depend on Es, q-n, qn and are determined here (first the 
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Fig. i 

electrostatic problem, and then the dynamic problem, is solved [6]). Harmonic excitation 

produces an additional variable normal pressure qn on the surface in contact with the metal; 
this pressure depends on the amplitude of the radial displacements and the rigidity of the 
shell. 

We write the circumferential strains of the metal shell as [5] E2 (~ = O2M/EM = W/R M 

(O2M/EM = W/R M are the dynamic tensile stresses, the elastic modulus, the radial displace- 
ments, and the radius of the middle surface of the metal shell). From the relations above 

if follows that qn = EMhMW/R~ for ~ = qnRM/hM (hM is the thickness of the metal). 

From the first two equations of (I.i) we have 

~ (~1 + ~.~ - ~), ~ ' =  ~ ( i - - ~ )  
51 

E E ( 1 . 3 )  

~ = - -q~  (1:2 + z/h), ~7~ =- (i + ~)(2Q~E~E~ + s~a). 

The strain distribution along the thickness of the shell is defined by the Kirchhoff--Love 
hypotheses [5] 

(o) = e~o) 
(1 .4 )  

(ez (~ and ~2 (~ are the strains of the middle surface of the shell, and 
changes in the principal curvatures of that surface). 

The relations [7, 8] 

~I and • are the 

- ~ ~ ( 1 )  

E3 = E~ ~ + z?~ 1), E3 = E~ ~ + z ~  , Ea = - -  2 ~ / h ,  ~,~ = - -  2~o/h (1 .5 )  

which are analogous to (1.4), can be taken for the electric field strength in the ferroelec- 
tric ceramic. The formulas for the constant component E3 (I) in the case of electrostatic ex- 
citation are given in [6], which also contains ~a (I). 

The electric induction D3 is determined with allowance for (1.1)-(1.5) in term,~ of the 
mechanical strain tensor from the expression for the derivative of the internal energy, where 
electric field strength is the independent variable [i, 9]: 

- - ( 1 )  E Da = { % ~ -  4Q,2(g~ ~ + zeal))  [20t2 (E(3~ + zE3 ) (c l l  + cfz) + 
' _ _  _ ~ - ( 1 )  \ E + 2 Q ~ ( ~  ~ ~-~Z~'))] 2Q~1(~~ + ~ ) [ 4 Q , ~ ( ~  ~ + ~ ~ ,  + 

+ 2 Q ~ ( ~  ~ + ~ f ~ ' ) ~ d }  (~o) + ~ , )  + [2Q~,(E~o) + ~ Z ~ ' ) ( ~  + 4 d  + 

-b 2Qn (E~ ~ -t- zE(al))cEla ] [e~~ -{- e~ ~ -t- z(• 1 q- • -4- ( 1 . 6 )  

+ [4Q12 ( ~ o )  + zc3 )c13 + 2Qnc3~ + zeal))] x 

/ 4 [(, + 4o,) 
• [~1~ (i -- ~') + (i + .) z (• + • - -  2Ea] - -  

s33q,~ + "~ + 2Q n + + 
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The D3 distribution is in the nature of the skin effect near the electrodes and in the 
rest of the shell Ds is virtually constant over the thickness [8, i0]. 

Setting the terms with z equal to zero in (1.6), we obtain 

The value of Es (~)  

= E(~)B ~IA ; 

B1 ---- I@Q1.) [ ' S Q ~ I ~  + c15) + Qllq~ + (~ + ,) ~ ] ,  

B~ = --  2 (x, + • [a + ~V (1 + ~t)] + 2~(2o) 37~, i~ (?sf~E, ,h~ + s~.~),z 

-. ~(o> ~ s~); B~ = 2 (e l  ~ + d~ [a + I~,, (1 + rt)] - -  . ~ [~(?sfa + 

E 
9 E E S13 

= 011 (q~ + ~ 
811 

is determined from the formulas [6] 

/~( i )  qns~Qll(2Q12cla-7- , ,  33]] 

(~io> 

E 
sis (2Ql.oC~ 3 

+ ~ (i--~) 
$11 

~ ( ~ . )  = 6 ~ - -  Q12  (Of1 "~ C12 ) - -  8QnQx,cf3 - -  3Qnc.5 - -  4Ql,Cfa - -  

6sE3Q'2 ( 9 ~  c E E E-- ( E 3 2 E )  
- -  , \--~t/12 13 + Qncaa) + so3q~ 3QlxQ12c13 + "~ Qaca~ �9 

S l ~  (1 - -  p,) 

E E E s13(2Q,~ca,+Qn%8)] 
QI 2  (C15 -1- C1E2) "J7 Q11Cf3 + - - -~ - - -  - - - -  , 

811 ( t  - -  ~.t) J 

E + ~o))[Q,,(~15 + c,,) + Q,1~1~] + 

- E + O,l~5)(;io,  + ~o, + q.s.), 

(1.7) 
(1.8) 

( 1 . 9 )  

(1.10) 

In (i. I0) 11, ~i (~ and [2 (~ are found from the electrostatic solution [6]. 

Substituting (1.4) and (1.5) into (1.3) and expressing the forces T I and T 2 at the times 

M I and M 2 in terms of the integrals of oI and o2 [5], we obtain the following electroelasti- 
city relations: 

( 1 . 1 1 )  
T1 = Dr (e~~ + Ve~ ~ ---3~(~ T2 = DT(e~o) + ~e~o) _ ~o));  

Mx-----D~(• + ~ x , ) + M o ,  M 2 = D m ( x 2 + ~ •  + M e ,  ( 1 . 1 2 )  

D T  - ~ -  

= ~ 2Q,2E3 E3 h ) / t 2 s n ( t  - -  F). Me h2 (sE~qn _ _  -(o) ~ (I) E 

. 

ance for the prestressing have the form [ii] 

H ~ - -H H d T J d s  - -  r f l w  /ds  = - -  ~U, d N ~ / d s -  T "  - -  2 q = - -  ~ ' W ~ ;  

dM1/ds  - -  Tin) d W ~ / d s  = N1, s = s/B,  

T ~ = T C D T  ( i = l ,  2), M ~ = M 1 / B D T ,  ? ~ =  

- 12(1) = T~h/2B, = qn (2R + h)/(--  2DT), ~" ~" 

U u = U/R,  W H = W / R ,  q ='$,~R/DT ~- E~hMW' /DT,  % = hp o?RVDr ,  

The equations of motion of a cylindrical shell of a ferroelectric ceramic with allow- 

(2.1) 
(2.2) 
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TABLE 1 

No. of 
variant 

Excitation 
frequency, 
Hz 

0 
50 

30.10 ~ 

[p = 31,0. iO 3 

30,0. t0 a 

/p : 31,5- t0 s 

30,0- t 0 ~ 

fp = 32,0.t0 ~ 

q-n.N/m 2 
Coefficients 
of Eq. (2.4) 

Deflection iRight side 
WIf[~'=O [of Eq. ( 2 . 4 )  

10 ~ 

t0 ~ 

0 

0 

iO ~ 

t0 v 

G l a2 

0,269.t0 ~ 0,29.t0 a 

0 , t61. t0  a 0,29.10 a 

0,907 0 , t1- t0  ~ 

0,954 0 , t0- t0  ~ 

0,269.10 ~ 0,t96.10 ~ 

0,269.t0 ~ 0,213.~0 ~ 

0,161-~0 ~ 0,23.t0t  

0 , t61. i0  ~ 0,216.10 t 

--0A56.10 -~ 

--0,195.10 -a 

--0,308. l0 -a 

--0,258. t0 -~ 

--0,310. t0 -a 

--0,192. i0 -~ 

--0,106-10 -~ 

- -0 , t5 .10 -~ 

0 

--0A7.10 -~ 

- -0 ,6i .  t0 -~ 

--0,65. t0 4 

--0,611.10-* 

--0,67. i0-~ 

--0,61 �9 i0 -~ 

--0,70.10-* 

where s is the linear coordinate in the axial direction; R is the radius of the middle sur- 
face of the shell; U and W are the components of the displacement vector of the middle sur- 
face in the direction of the unit vectors T~ and n (see Fig. i); NI H = NI/DT are transverse 

shear forces; p is the density; and T2 H are the prestressing forces. 

We express the strains of the middle surface in terms of the displacement [5] 

e(o) = dU/ds, ~(o) ~- W / R ,  • = - -  d2W/ds 2 

The system of equations (i.ii), (i.12), and (2.1)-(2.3) 
equation 

dGWH/ds 6 + a~d4Wn/ds 4 ~- a2dZWn/ds ~ -~ asW" = /, 

Glk  = d ( -T$ - -  ~1 -}- ~ ) - -  ) J ~ D T  - -  T~(1 )RDT - -  a ~- c - -  e, 

~ k  = d [~  + ~ ( Z  - -  1) + ?~(~ + 1)] + 

+ RD~ [~ ( ~(, - 1) + (t , )  (t + ~ )  + ~r~ ] + 
+ E ~ h ~ R - - ~ ( a - - c  + e), k =  D~JR + b, 

a3k = )~RDTE3 (Q,~), E3 (Q12) = 2 ( i  + ,~) QnE(~ ~ 

a =hasf~EMh~/(i2sE~ (t - -  bt) R) ,  b = haQ~2 (~(0) )~  x ( 2 . 4 )  

• I~ + ~v (~ + ,@/(3A~m[~ (t -- ,)), 
2 + s~ 3 ) ~ %~ (7~ ~ EM~,~ ( w ~  ~ ~ ~(o)~(, 

'<12~3 8 [{1 _{_ ~V ( ]  -[- ~l)J, 
----- 3R~A:s:E: (1 - -  ~) . d 3Aasf: (I - -  ~t) 

h3~12E~ 0) E(31) EMh 1M~ E E 
(w~.+~..)  Ik ~D~E.(Q@, 

6A:sElx (t -- ~) R~ 

sf3E~h~ 
~, = ~ + ~ (~ + ~). 

T h e  c o n s t a n t s  a ,  ~ ,  7 ,  a n d  A~ a r e  d e t e r m i n e d  b y  E q s .  ( 1 . 8 ) - ( 1 . 1 0 ) .  F o r  t h e  c a s e  o f  a x i -  
symmetric free oscillations of the shell we adopt the boundary-value conditions 

(• = 0). (2.3) 

is reduced to the fundamental 

C o r r e s p o n d i n g  t o  t h e  f i r s t  t w o  c o n d i t i o n s  o f  ( 2 . 5 )  a r e  t h e  e q u a t i o n s  

( 2 . s )  

DM d2Wif h2sSErahr~Wif h.3t3 ~(o)~'(l) 

E (I--~) ' R d~ ~ + 12RMsE 1 (t - -  ~) 6s11 
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(o) (o)  
The changes in the curvature • and strains E 1 and ~2 in the case of electrostatic loading 

are virtually constant along the length of the cylindrical shell; hence we assume Es(~) to 

be constant in the expression (1.7) for ~a (z) and the function dF.a(1)/ds from (1.7) is 

determined from 

A1 dr = ~ ~  ~ 2 . ~ [ a + ~ / ( l + b ) ] +  
(2.6) } / 

~7~~ ~ ~ } ( + 
ds 

Here the constant h~ is found from (1.8). From (i.ii) with allowance for (2.3) we express 
T~ H in terms of the displacements 

T~ = d U " / d s +  9~W" - -  Ea (Q~), E a (Qn) = 

= 2 G :  (~ + ~ ) l ( d ) ~ i  ~ 

(2.7) 

From the boundary condition TIH(s = s0/2) = 0 with allowance for (2.3) and (2.7) it fol- 

lows that d2UH/ds 2 = -~idWH/ds, for s = s0/2 and (2.6) takes on the form 

A dE~ ~) 2E~o) ( ~  d3WK - } 
d7 = ~ [~ + ~ (I + ~)1 + dW~ E~,h~ + + 

~(~) ~w- z (t - ~,)[~ + ~ (~ + ,)l - ~ ~ ( ~  + ~ )  �9 

The last boundary condition of (2.5) gives a third equation for determining the constants 

of integration: 

d~W ~ ( ~  + b.) ~w" -" d ( ~  --~,~)] - -  + 
R d7 4 + [a - -  c - -  d + e - -  T2(1)RDT - -  dT. z 

+ {2RDT(~ --  t + ~ata~)- E~hM [s~aDT(l  + ~ ) -  2R] --  2)~ d~i} W" = 
= [(~ --  t) R D r  - -  kd] E 3 (Q~).  

The solution (2.4) 
tion 

is obtained from an analysis of the roots of its characteristic equa- 

( 2 . 8 )  
x 6 §  ~ § a~x 2 § a3 = O. 

i/2 
By means of the successive exchanges x = Yl , Yl = Y - az/3 we find the cubic equation ya + 

py + q = 0, p = a 2 - am2/3, q = aa - ala2/3 + 2a~/27 from (2.8). 

When the parity and symmetry of W H relative to the origin s = 0, located at the center of 
the cylindrical shell (see Fig. i), are taken into account one solution of (2.4) at given 
relations of the coefficients ai(i = i, 2, 3) has the form [12] 

W ~ = C~ch ( x ~ )  + C2ch~scos ~ s + C a s h ~ s s i n ~ s  + --f 
a 3 Y 

=~' = =g~' ~= - - r +  g ~ (2.9) 

- -  1 / a  

= - - (~  + ~)/2, ~ = (--q/2 + ]/'D)X/~, ~ = ( - -~2  - - V D )  , 

D = (p/3) 3 -[: (~2) 2, 

where x I is the first root of the characteristic equation [in the case of negative radicand 

x = (y - ai/3) I/2 the function cosh Ixlls instead of cosh xls, and at other values of a and 

the solution (2.9) is expressed in terms of hyperbolic instead of trigonometric functions]. 
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For a shell made of a ceramic of the TsTSL type [reinforced with a metal layer of thick- 
ness h M = 0.2 m, having an elastic modulus E M = 2.1"1011 N/m2], with the geometric parameters 
R = 16 mm, h = 3 mm, s o = 32 mm, and Q12 = -1.3"i0-z6 m=/V= at V = 1.5 kV and V = 300 V the 

results of calculations at various frequencies and values of qn are given in Table I, from 

which we see that prestressing force qn only slightly increases the resonance frequency of 
the metal-ceramic shell and in the case under consideration decreases its displacement W H by 
an order of magnitude (variants 4, 6, and 8). For variant 2 (at 50 Hz) the derivatives of 

W H are d2WH/ds 2 = 3.95-10 -6 , d4WH/ds 4 = -5.51-10 -13 , and d6wH/ds 6 = -4.72"10 -11 A compari- 
son of the derivatives, the coefficients, and the right side of Eq. (2.4) indicates that the 
fourth and sixth derivatives can be disregarded at low frequencies. 
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